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Abstract. We study the integrability of the discrete nonlinear Schrodingez quation with four 
elements. Using the two-element system as the underlying integrable subsystem we mat the 
coupling to the additional oscillators perturbationally. A symmetry reduction method is used to 
map the coupled system of four elements on a three-degree of freedom Hamiltonian system in 
the reduced phase space. We analyse the geometrical svucture of the phase space of the resulting 
reduced system focusing on t@ homoclinic manifold. By means of wiggins' genedized 
Melnikov method we prove non-integrability through the existence of cbotic dynamics in 
demonstrating the presence of h o l d  diffusion for the coupled dynamics. 

1. Introduction 

This paper is based on the discrete nonlinear Schrodinger equation (DNLS) 

(1) 

where the c. are complex probability amplitudes at site n, y is the local nonlinearity 
parameter and Wn,n+l are the~dispersion parameters determining the linear coupling between 
the sites. This equation arises as a discretization of the continuum nonlinear Schrodinger 
equation. While the latter is completely integrable [l, 21, numerical studies of the dynamics 
of its discrete version (1) point to non-integrability (see, e.g. [3,4]). In fact, in a previous 
paper the existence of horseshoe chaos in the dynamics of the three-element DNLs has been 
proven analytically [SI and, to our knowledge, no (rigorous) proof of the existence of chaotic 
(non-integrable) dynamics for the DNLs with n > 3 has been given so far. 

Equation (1) is also known as the discrete self-trapping (DST) system and presents a 
set of coupled nonlinear classical oscillators, introduced by Eilbeck et nl [61 as a model 
to describe the nonlineaf vibrational dynamics in small polyatomic aggregates. The DST 
system can also be applied to model the self-trapping phenomena in chemical, condensed 
matter and optical systems [7-101. 

The regular and irregular dynamical behavior of the DNLS system with a few degrees 
of freedom (n < 4) was investigated in [6,11-19]. Most of these studies were performed 
for the DST system with three degrees of freedom, i.e. a trimer, which is the first non-trivial 
case beyond the dimer case. The latter is integrable and its solutions can be expressed in 
terms of Jacobian elliptic functions [7, 201. 

In this paper we study the integrability of the four-element DNLS, referred to as a DNLS 
tetramer. The aim of this paper is to prove the existence of chaotic solutions analytically. 

. dc, 2 
1 - = -Y Icnl C" - [W",+lC"+l + W"J-1 C " 4 1  dt 
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Starting from the integrable dimer and treating the weak coupling to the remaining sites of 
a tebamer configuration perturbationally, we will prove the existence of homoclinic tangles 
in the tetramer dynamics by applying Melnikov's method [21,223, further developed by 
Holmes and Marsden [231 and generalized by Wiggins 1241 to cover multidimensional 
systems as well. 

The paper is organized as follows. Section 2 presents the model for the DNLS tetramer 
and deals with a symmehy reduction to a Hamiltonian system in a lower-dimensional phase 
space. In order to apply the generalized Melnikov method, in section 3 we investigate the 
geometrical structure of the phase space with special attention to the homoclinic manifold. 
Section 4 is devoted to the calculation of the generalized Melnikov function' and discussion 
of the appearence of Arnold diffusion in the coupled oscillator system. Finally, we give a 
short summary in'section 5. 
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2. The DNLS tetramer and symmetry reduction 

We write the DNLS-tetramer Hamiltonian in terms of the complex site-occupation amplitudes 
(in the following referred to as amplitudes) as 

+w,(C;c2 + c;c3) + wl4(c;cI + c;cd + w24(c;c2 + c;c4)} . (2) 

Whereas 'the system is assumed to be symmetric in the real nonlinearity parameters yj = y ,  
it is asymmetric in the real dispersion parameters, Wjj = Wjj (the bonds in the classical 
coupled-oscillator picture) by choosing a much stronger coupling W34 = V between sites 
3 and 4 than between any of the remaining sites. We call the thereby marked (3,4) pair a 
dimer, the dynamics of which will be taken into account rigorously. The smallness of all 
couplings other than the intra-dimer coupling V has been made explicit by the dimensionless 
parameter 0 < E <( 1 in front of the terms which will later be treated perturbationally. This 
situation can be encountered in studies of dimerized molecular aggregates in which only 
two of the constituents couple strongly to form the above-mentioned dimer. Different 
tetramer configurations, as displayed in figure 1, follow from (2) by choosing appropriate 
sets of dispersion parameters as indicated. To maintain full flexibility the present analysis 
is based on the most general tetramer configuration (a). Since a term E c, proportional to 
the on-site energy E can be eliminated from the equations of motion by a simple gauge 
hansfonnation cj + cj exp(-iEr) a corresponding diagonal contribution has been omitted 
in the Hamiltonian (2). 

The system obtained by setting E = 0 is integrable, since it decomposes into the ~Nls 
dimer and the two completely uncoupled single sites 1 and 2 with conserved occupation 
probabilities. As already mentioned, we are interested in the effect of the small couplings 
introduced by the perturbing part of the Hamiltonian (2). Instead of explicitly writing 
the equations of motion for the amplitudes cj of the system, in which, besides energy 
conservation, the norm 

P = ICil* 
j=l 

(3) 

is a further conserved quantity, we first express the Hamiltonian (2) in a different form 
resulting from: 
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w,,=o 

w,,=w,=o w,,=w,,=o w,,=w,,=w,,=o w,,=w*,=w,,=o 

W t n 1 

w,,=w,=o w,,=w,,=o w,,=w,,=w,,=o w,,=w*,=w,,=o 

Figure 1. 
indicated. 

Different teframer configurations specified by sets of dispersion parameters as 

(i) a transformation of c1 and cz to action-angle variables 
cj = f i e - @  (.i = L2) (4) 

and 

canonically-conjugate variables ( p ,  q5) and (N, 6 )  
(ii) a symplectic transformation of the dimer amplitudes c3 and c4 to two pa'm of 

The momentum variable p is qual to the occupation-probability difference at the dimer 
sites, i.e. p = Ic3Iz - IC.#. The auxiliary action variable N is given by N = lc3I2 + lc4I2 
and, obviously, specifies the amount of P contained in the dimer, since P = N + 51 + Jz. 

H = H:(P,~; N . B )  + H P ( J ~ )  + H%) + C H ' ( P ,  4, N ,  B, J ~ ,  el, J ~ .  ez) (6) 
with 

The Hamiltonian (2) expressed in these new variables becomes 

H O = H : + [ H P + H , O ]  

= - i y [ N 2 + p Z ] -  V d m C O s @ -  f y ( J ~ + J ~ )  0 
and 

= - { z w l z m  cos(e, - e,) + [ w 3 j d m  COS( + p - ej )  
j d . 2  

+ cos(: - B + e , ) ] }  -e4). (8) 

The original complex variables cj span the eight-dimensional product space C x C x 
C x C, which reduces to a dimension of six as a result of the two conserved quantities H 
and P. A reduction of the dimensionality of the phase space corresponding to the system 
of Hamiltonian (6) is possible by applying the symmetry reduction method of Marsden and 
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Weinstein [25,26]. Apparently, the interaction Hamiltonian depends on the angle variables 
6 and 01 ( j  = 1,2) only in their combinations [ej - 61, which suggests passing to new angle 
variables @j = (0, - B )  ( j  = 1,2) and introducing new couples of canonically conjugate 
action-angle variables ( Z j ,  $ j )  and (4 .  $ j )  with the generating function 

D Hennig and H Gabriel 

F = 1 [(e, - p)zj + (ej + B)&] . 
j = l . Z  

The angle variables $j (j = 1.2) are cyclic variables for the Hamiltonian. 
corresponding conserved action variables 4, and the action N are related by 

The 

N = fl + fz- P. (12) 

In the following N is treated as a system parameter. The reduced three-degrees of freedom 
Hamiltonian 

H = H;(p,  4) + H P ( I d  + H,O(Zz) + E  H ' h  4, [I. 12, +I. +z) (13) 

written in terms of the final variables is the basis of our explicit treatment. It aims at 
proving that integrability of the unperturbed system is lost due to the coupling of the dimer 
to the other tetramer sites. The dynamics of the DNLS dimer exhibits a homoclinic structure 
for a nonlinearity parameter y > 2V [20] and the following investigation deals with the 
establishment of chaotic motion in the vicinity of this homoclinic struculre as a result of 
the coupled-tetramer dynamics. 

3. The unperturbed system and homoclinic manifolds 

In this section we collect the main results for the geometrical structure and the dynamics 
of the unperturbed system, which is needed to apply the generalized Melnikov method to 
the perturbed DNLS dimer in section 4. 

The integrable equations of motion in the dimer variables ( p ,  4) are given by 

The system (14) and (15) has a hyperbolic fixed point at p = 0, 4 = 0 for 
(Y = Ny/(2V) z 1. The hyperbolic point is connected to itself by a pair of homoclinic 
orbits formed by its coinciding stable and unstable manifolds. 
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The coordinates of the homoclinic orbit, for 2 > ci > 1, are given by 

4v 
Y 

p;(t)  =.&ph(r) = - & = i s e c b [ 2 2 V r ]  (16) 

The six-dimensiond~phase space of the unperturbed system is given by 

( p .  4, Z l ,  *l, 12, *z) E (8' x TI x 3 2 1  x, TI x 021 x 7 - 1 ) .  (18) 
For ci > 1 the unperturbed system bas an invariant four-dimensional normally hyperbolic 
manifold 

M o = { ( p , 4 , Z i , * i ,  12, $2) E W' x T' x 02' x TI x 02' x T' 
IP = 0.4 = 0, U 1 , h )  E 8 2 ,  ( $ 1 ,  *2) E LO, 2Z)l (1% 

which has the structure of a two-parameter family of 2-ton. Furthermore, M O  has five- 
dimensional stable and unstable manifolds denoted by~WJ(Mo) and W'(Moj, respectively. 
These manifolds coincide along the five-dimensional homoclinic orbits r*, wbicb can be 
paramehized by 

(20) r* = [(p;(-ro),~hh(-tO), (Il, id, wp, *;)) E x T I  x mz x T~ ito E a]. 
The completely integrable unperturbed vector field restricted to M O  is determined by 

j j  = o  $. ,- ---L  4 ~ ( , + Q  1. ( i = 1 , 2 )  (21) 

I j ( t )  = z~(o) =constant 

with flow given by 

$ j ( t )  = - - $ y ( l j ( o )  + 4 )  t + e;. (22) 

The 2-torus on M O  corresponding to fixed actions i = ( [ I ,  fz) is denoted by %(I). This 2- 
torus has three-dimensional stable and unstable manifolds, Ws('&,(T)) and Wu(l , (n)  which 
intersect along a three-dimensional homoclinic orbit r:, obtained from (20) by fixing the 
I component. 

4. The generalized Melnikov method and Arnold diffusion 

For the perturbed system, i.e. E # 0, the stable and unstable manifold of the homoclinic 
manifold may intersect transversely leading to the creation of homoclinic tangles. The 
analysis of the dynamics in the vicinity of the homoclinic orbit is based on the properties 
of the generalized multidimensional Melnikov function introduced by Wiggins [U], which 
provides a signed measure of the distance between the stable and unstable manifolds. In 
this sense the Melnikov method serves to prove that the integrability will be broken under 
small perturbations inducing chaotic motions near the homoclinic manifold. 

We start with a brief discussion of the geomenical structure of the perturbed phase 
space. According to Fenicbel's invariant manifold theory 1281, the homoclinic manifold 
M O  persists for sufficiently small E # 0 as a locally invariant manifold M ,  in the perturbed 

.system and has local stable and unstable manifolds WS."(M,) close to W5.'(M0) (for details 
of the persistance theory for normally hyperbolic manifolds see chapter 4 of Wiggins [24]). 
Furthermore, under the assumption of non-degeneracy for the frequencies of the decoupled 
oscillators, i.e. det[D:Ho(I)] # 0, the KAM theorem [29] allows to conclude that for 
sufficiently small E most of the non-resonant 2-ton are preserved. For fixed actions 2, a two- 
dimensional invariant torus z(T) is located on M,.  The existence of the two-dimensional 
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stable and unstable manifolds, Ws(Z(&) and W’(Z(f)), of the torus is ensured by Graff‘s 
theorem [30]. 

To determine whether the stable and unstable manifolds Ws(‘Q and Ws(‘I;) of the 
toms intersect transversely on M,, we have to compute the distance de between the local 
stable and unstable manifold at points along the unperturbed homoclinic orbits rf. The 
two-component Melnikov vector Mz(@F,-@) = (MI(@?),  Mz(@;)) is proportional ta the 
signed distance in Ws(7&& and W”(Z)(I) to order 6 which is determined by (Zf)j-(Z;)j, 
( j  = 1,Z). 

According to Wiggins [241, the components of the Melnikov vector are given by the 
following two Melnikov integrals: 

Mj’(’@ = -/ dt o$lHi[Ph+(t), @h(f ) ;  i, $j(t) + (23) 
which has to be evaluated along the homoclinic orbit of the unperturbed system. We resnict 
the analysis to the case marked by the ‘+’ sign in (Z), since the ‘-’ sign case can be 
treated in an analogous manner. 

M,?(@) = -6m/” dt COs(0jt){W4j[ S-(t)  cos(@,?) + S+(t)  sin(@)] T-0) 
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CO 

( j  = 1.2) 
-02 

Using equation (11) we obtain after some algebra 

-m 

-w3j[ ~ ( t )  cos(@,?) - S+(t) sin(@)] ~ + ( t ) }  

+ E  (-1)j WIZ (21 + M Z Z  + 12) dt sin(o1zt + (l/.p - &) (24) S----J“ -m 
with 

&(t) = &Nz - [ P k ( t ) l z  (N - Y / ( 4 v )  [ph(t)Iz) 

oj = $y(r;  + 4 )  0 1 2  = -- :Y rcri - fz) + (fl - id1. (27) 
The Melnikov integral in (24) is only conditionally convergent. Following an approach 

given in chapter 4 of [241, we therefore consider the improper integral as the following 
limit of a sequence in time IT?} = {f27cn/oj}, n = l , ~ , .  . . : 

$(@/) =- n-m lim 6 W4j [SW) cos(@,?) + S+(t) sin(#)] T-(t) 
7 

- W3j [S-W co~(@j’) - s+(t) sin(~j’)] T+W] 

t e  (-1)jWiz J- (21 + 1 N z  + 22) n-bca hm . /*: dt sin . [ w t  + (9: - @)] 

(28) 
After integrating once by parts and some rearrangement we are left with 

1: dt sin(mj t )  Mj’($,?) = Iim E 

7 Oj 
n-tm 

x {[W4j (SL T- + S- TL) - wjj (SL T+ + s- Ti) ]  COS(@) 

+ [ w4j (s; T- + S+ T’) + w3j (s; T+ + S+ T;)] sin(*;)} 

(29) 
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where the primed quantities denote the time derivative of S and T given explicitly by 

Since S i  and 7‘’ arerapidly decreasing expressions, we are allowed to extend the integration 
limits in (28) to infinity and thus obtain convergent integrals. In summary,,we find that the 
components of the Melnikov vector are of the form 

(33) 
where F j  and Gj, ( j  = 1,2) are functions of the system parameters determined via the 
integrals in (29). 

MT(@;”) = Fj(f; y,  V, W3j, W4j) cos($) + Gj(i ;  y ,  V, W3j, W4j) sin($) 

The components of the Melnikov vector have simple zeros at 

+;” = arctan[--(Fj/Gj)] + kZ k = 0, il, f2 , .  . . (34) 

(35) 
j = I . Z  

[D,p,+;lMi] has rank 2 at the zero set of Mi. Due to the theorems (4.1.19) and (4.1.20) in 
[24] the stable and unstable manifolds, WS.’(?;)(I), of the KAM torus intersect transversely 
near (+!, e:) in the five-dimensional energy surface. 

In summary, on each five-dimensional energy manifold we have a one-parameter family 
of 2-tori. The tori along with their three-dimensional stable and unstable manifolds are not 
isolated on the energy manifold. In the perturbed system most of these tori survive and their 
stable and unstable manifolds intersect transversely. The resulting homoclinic tangles of the 
manifolds of a surviving KAM torus can intersect the tangles of manifolds of neighbouring 
KAM ton, establishing a msi t ion chain. In this way orbits may wander among the KAM tori 
in a chaotic fashion called Arnold diffusion [31]. As a consequence, motion of arbitrarily 
high period can be found which, for instance, might be reflected in an irregular energy 
m s f e r  among various nonlinear vibrational modes of a molecular tetramer system. 

and because of 

det[Dc+p,&W@’P, $41  = [ Gj COS(+,?) - F j  sin(@,?)] # 0 

5. summary 

In this paper an analytical proof is given for the non-integrability of the DNLS-tetramer 
dynamics. We have applied Hamiltonian methods such as Marsden-Weinstein reduction in 
combination with Wiggins’ generalized Melnikov technique. Starting from the DNLS dimer 
as the underlying integrable subsystem the coupling to the additional tetramer sites has been 
treated perturbationally. The system in the complex amplitudes has been reduced to a real- 
valued Hamiltonian system with three degrees of freedom. In analysing the geometrical 
stmcIure of the reduced phase space special attention was paid to the homoclinic manifold. 
We established the presence of chaotic dynamics in the form of Arnold diffusion by means 
of the generalized Melnikov method. The existence of an infinite number of zeros of the 
components of the Melnikov function was shown, which in turn guarantees the presence 
of homoclinic tangles around the homoclinic manifold implying the existence of Amold 
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diffusion. The DNLS tetramer can also be regarded as a finite segment embedded in a longer 
extended DNLS chain. Since chaotic motion is present in the n = 4 subsystem it will very 
likely also occur in an extended chain. 
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